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SMOOTHING FOR SPECTRAL METHODS

Stanley Osher
University of California, Los Angeles

Abstract

The purpose of this article is mainly to demonstrate, by means of simple
examples, that some kind of smoothing must be an essential part of any
spectral method.

Spectral methods have, in principle, infinite order of accuracy, if the
true solution 1is smooth. I shall review some old work, done jointly with
Majda and McDonough (1], which shows how drastically the situation changes
when discontinuities are present. The error pollutes the solution globally if
no smoothing 1is used, and pollutes it in a very large region, even 1if
smoothing based on the finite spectral transform is used. A more drastic type
of smoothing will remove this error.

Smoothing 18, in general, necessary for two reasons:

a. Accuracy

b. Stability

This work was supported by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-15810 while the author was in
residence at the Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23665.




1. PError Analysis for Smooth Solutions

I shall begin with a periodic one-dimensional very simple problem:
(1.1) u = au_,

to be solved for -mn<x<=wm 0<¢t, with a, some fixed constant, and

initial data

u(x,0) = 4(x).
The Fourier method proceeds by breaking up the x interval via

x, = Vh, V=0, £ 1,000, N,

with (2N+l1)h = 2n. For any u(x), one finds its trigonometric interpolant
P x) = (u)(x)

as follows. First one computes the finite Fourier transform:

- N -ijxv
(Fu)(§) = u(j) = 1/(2n+1) ¥ e ulx,)
ve=N
(1.2)

j = 0, * 1,.. .’t N.

Then one obtains the {interpolant:

N
(1.3) P = Fr@ = ) M.
=N



It follows that
h
u (xv) = u(xv) for v=0,%1,...,N.

The approximate solution to the Cauchy problem (1.1) could be obtained by

solving exactly the finite dimensional problem:

Buh buh

-4 o " %ox

a(x,0) = o%(x).

The solution is

N
(1.5) wix,t) = T B(y)edlitHiix

j=-N

To find the true solution one needs the true Fourier coefficients:

(1.6) a(5) = 1/2n | e~1I%y(x)dx.

-7
One then has:
(1.7) ux) = ¥ apetdt.

j:-cn

For (l.1), the true solution is thus the infinite sum:

(1.8) u(x,t) -j? d(gyeatitHiix,

R e OO




Thus we have a simple expression for the error:
(1.9) u-ul = § §(gredtitHiix
[31>N

+ T [6(3)-8(y)1e2titHiIx
19]<N

- EI + EII.

The relationship between $(j), the true Fourier coefficients, and

$(j), the finite Fourier coefficient 1s easily seen to be

(1.10) () = uZ_j(jw(zml))-

See Kreiss-Oliger [3].

Thus, we may rewrite (1.9):

(1.11) u-ut = T f(gyedtit + 1ix

131>8

+ § et AIx oy a one))).

3l <N b3t

Now 1if ¢(x) 1s a smooth function, i.e., $(x) & Cm, then for any K>O0,

there exists universal constants Cyx» 8o that
o1 < cea+13D7K,

This, together with (1.11), implies



(1.12) Pu-u"d < Cphp,
in any reasonable norm, as p ¥V O. (We use the convention that universal

constants are always denoted Csubscript)‘ This explains the "infinite" order

accuracy.

2. Deterioration Due to Discontinuities

Suppose, on the other hand, ¢ 1s not smooth at x = 0. As an example, we
take

(2.1) o(x) = Ix!Y o(x), v > 0,

1 if [x] <t -2, o =0 I{if

i

with 0 < 0 <1, a smooth function, o

Ix] » ®n - €, for small € > O. Then &(j) satisfies
0 ya 2 -l-y-a
1(55)" 81 = o{a+13D ) .

The approximate solution has a global error. Let R6 be a region of

smoothness for the exact solution

Ry = {(x,t)/|x+at] > & > 0}.

In [1}, we show the following global error estimate.

Lemma 1.

(1) max Ju(x,t) - uh(x,t)l < C6 h1+Y R

(x,t) € R6

h
(2) 1lim  max (lu(x,t) I+g (x,t)l) >C>0.
h¥0 (x,t) € R6 h




For a Heaviside function type of initial data:
¢(x) = (sgn x) p(x),
with ¢(0) = 0, the global error is O(hz). This anamoly occurs because of a

cancellation in the finite Fourier series for this function. If we took any

nonzero value for ¢(0), the error would be O0O(h), as expected.

3. A Simple and Inadequate Smoothing Technique

For smooth ¢(x) defined as 1in the previous section, we filter the

initial data and use

h N
(3.1) u(x,0) = ¥ 6(3h) e
j--N

1jx$(j).

Note, we are still using the finite Fourier transform of the initial data.

Then

(3.2) w -l = 5 230 (1 o4ny Yo(3)

j=-m

, eij(X+at:¢(jh) T o(§+v(an+1)) = E +E. -
13I<N jv]>1

It 18 shown in [1] that

max |E_| < C hk.

(x,t) € R5 I A
for any A > 0.

If ¢(x) 1is the Heaviside function, then we also show that, in



5 EII 18 within O(hx), for any A, of the solution to the true Cauchy

problem (l.1), with initial data:
(3.3) u(x,0) = h2[C57(0) + hCy877(0) + eu] &

Here 6(x) is the Dirac delta function, and &° 1is 1its distribution
derivative, etc.

Since there is no coupling for the problem (1.1), the support of this
distribution does not spread into Rg when we solve the problem. Thus fqr
this decoupled case we luckily have infinite order accuracy in RG' But this
result is false in more complicated cases.

Suppose, for example, we consider the coupled hyperbolic system

(3.4) (ul) (1 0) (ul) (0 1) (ul)
= + ,
u, A 0 -1 gz -1 0 u,
with initial data

9
u, 0
for ¢ the Heaviside function. Then, there is a global deterioration of

accuracy within the range of influence of the orgin.

Let

. {(x,t) -1 + 6 <X < 1-8} .

(
Rg x

Then the analogous expressions for E; and E;; yield the results

IEII - O(hk) for all A >0 1in Ré(l).




However, Eyr is, within 0(h3), the solution of the Cauchy problem (3.4)
with initial data

o w2, 187(0)
(3.5) u(x,0) hcll 0 IR c, * 0.

Because of the coupling through the lower order terms, the entire shadow
region, Rél), feels the influence of this initial data and

—_ IE. .|

W o,

Thus, we have a global deterioration of accuracy.

In earlier joint work with Majda [2], we analyzed this 1large error
phenomenon for dissipative finite-difference schemes. Since such (usually
simpler) methods do not strive for infinite order accuracy, their comparable
deterioration might not trouble the finite-difference user, as much as it

might disturb the proponent of spectral methods.

4. A Drastic Smoothing Technique

For constant coefficient 1linear hyperbolic problems, we can remove the
large region of 1low accuracy by using and smoothing the true Fourier
coefficients of the initial data. Let

N

(4.1) u(x,00 = T o(jh) e
J=-N

3= 3n

(1) 0(2)

Actually, 1if $(x) = ¢(1) + &‘2), vith ¢ discontinuous and

smooth, we can take if convenient:



1jx

N N
(4.2) 0 =5 omelI® MWy + T s(gmelI® §3) (1.

j=-N j=-N
We then get infinite order of accuracy in regions where the true solution 1s
smooth.
This procedure is somewhat impractical for nonlinear shock problems, when
spontaneous shocks develop, because their true Fourler series is unknown. The
research at ICASE of Gottlieb and Lustman, involving fitting 4in spectral

variable space, is designed to overcome this.

5. Stability

In multidimensions, periodic linear hyperbolic system with variable (say
t 1independent, for convenience only) coefficients can be written:
g d
u, =( A (05— + B(x) Ju

v=] v
(5.1)

= Lu.

The naive (unsmoothed) Fourier-method approach to this problem, would be to

solve:
h d -1 -1y~
up = (¥ A (x) F eiej + B(x) F Ju(y)
(5.2) v=1 ’
= Lhuh ™

There 1s some controversy as to the stability of this method for general
variable coefficient problems, [3], [4].
This naive method, however, cannot work for nonlinear problems. As an

example, we consider




u
(5.3) ut = -(T)x .

The naive approach would be: Solve

au _ Fleter@?)
dt 2 '

(5.4)

Take, say, 3 grid points (N=1), with initial data

(5.5) W"(x_,00 = a, u'(0,0 =0, u"(x,0) = -a.
Then
h =2a
u (x,0) = — sin x
A
2

(u(x,0))" = 2-f;--(l-aos x) .

The solution to (5.4) 1s of the form:

(5.6) W0 = ae), wP0,0) =0, ul(x),t) = -a(v)

with

éa_a

ac  , 73

Thus a(t) becomes infinite in finite time, and this method is impractical.
Another approach might be to stabilize, using smooth cutoff filters, e.g.

h

2
(5.7) s “Litegpamr(d).
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This method would give the same solution 1if the initial data is either an
expansion shock or é true shock, both moving at zero speed. This means
uh(x,O) = ggn x, glves the same solution as uh(x,O) = —-Sgn Xe

Thus, a method which approximates uz, using (F-lp(jh)Fu)2 i.e., one
which "sees" u, not just u2, must be used.

For linear hyperbolic problems, to assure stability, we use

d
y A, (x) F-l°i'jv + B(x) F-l) p(Jh) u(ly),

(5.8) up =
v=1

where p 1s the usual type of cutoff function. If we solve (5.8) with
initial data uh(x,O) we have in [l1], a very general stability theorem (see

(1] for precise details).

Theorem 1.

h Kt, h
tu ( ,t)lls < Cs e fu ( ,t)ﬂs.
and

Corollary. If  u(x,0) is smooth, then we have infinite order accuracy,

globally, for (5.4).

6. Convergence

We recommend solving our stabilized Fourier method (5.4), with the

drastically smoothed initial data
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N N
(6.1) Wx,0) = Y eee ¥ o(gm)b(q)eldcE,
jds-N jl--N

U(x) .

where p(x) o(x)
A very general convergence theorem was proven in [l1]. 1In a region
Ré, which 1s essentially any region of smoothness of the true solution to

(5.1), we have:

Theorem 2. For any A > 0 and any s, |[s] > 0 there is a constant C& s\
g ]

such that

8 h A
sup Iax(u-u )| < c&,s,kh R

(x,t) € R6

Thus, this method is truly infinitely order accurate. The precise details

are given in [1].
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